
## **KNOWLEDGE ORGANISER**

### **CHARACTERISTICS & FUNCTIONS OF THREE TYPES OF MUSCLE**

| Muscle   | Characteristics               | Example                        |  |
|----------|-------------------------------|--------------------------------|--|
| Cardiac  | Non-fatiguing, involuntary    | Heart (only)                   |  |
| Skeletal | Fatiguing, voluntary          | Biceps, Triceps, Soleus, etc.  |  |
| Smooth   | Involuntary, slow contraction | Internal organs, blood vessels |  |

### MAJOR SKELETAL MUSCLES

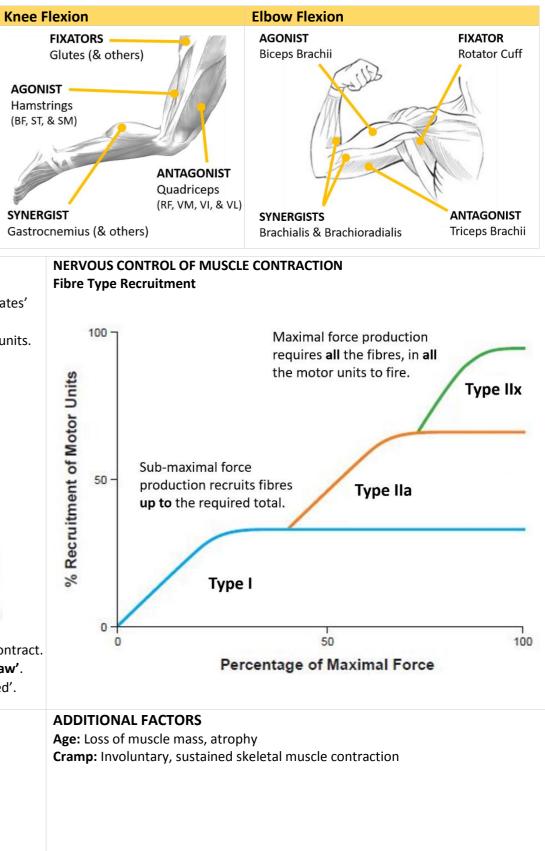


#### THREE TYPES OF SKELETAL MUSCLE CONTRACTION Contraction As muscle contracts... Used for.. Isometric ... no change in

MUSCLE FIBRE TYPES

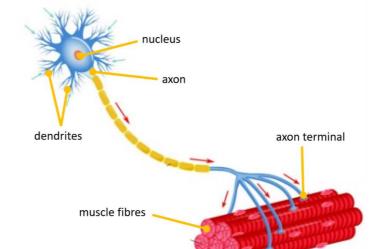
Concentric

Eccentric


| no change in muscle length | Static holds (e.g. iron cross) |   |
|----------------------------|--------------------------------|---|
| muscle shortens            | Movement                       | 4 |
| muscle lengthens           | Slowing and braking movements  | ŀ |
|                            |                                |   |

| Fibre Type   | Type I    | Type IIa   | Type IIx   |
|--------------|-----------|------------|------------|
| Twitch Speed | Slow      | Fast       | Fast       |
| Force        | Low       | High       | Very High  |
| Fatigue      | Slow      | Medium     | Fast       |
| Recovery     | Slow      | Medium     | Fast       |
| ATP Source   | Oxidative | Ox. & Gly. | Glycolytic |
| Blood Supply | High      | High       | Low        |
| Myoglobin    | High      | High       | Low        |
| Colour       | Red       | Red        | White      |
| Mitochondria | High      | High       | Low        |
| Recruitment  | First     | Second     | Third      |
| Diameter     | Small     | Medium     | Large      |
| Suitable for | Endurance | Games      | Speed      |

# Unit 1 Anatomy & Physiology: The Muscular System


### **ANTAGONISTIC PAIRS**

Muscles cannot push so are 'paired' with others that pull in the opposite direction.



### NERVOUS CONTROL OF MUSCLE CONTRACTION **Motor Units** A motor unit is a **motor neuron** and all the fibres it 'innervates'

- All the fibres in a motor unit are of the same type.
- A muscle (e.g. biceps brachii) is made up of several motor units.



### An electrical impulse is sent along the neuron.

6. Increased storage of fat 7. Increase tolerance to lactate

- If the impulse if sufficient **all** the fibres in the motor unit contract.
- Otherwise none of them contract. This is the 'all or none law'.
- To create more force more motor units must be 'innervated'. •

| RESPONSES TO EXERCISE (Short Term) |                                      | ADAPTATIONS TO EXERCISE (Long Term)            | ADDITIONAL FACTORS        |
|------------------------------------|--------------------------------------|------------------------------------------------|---------------------------|
|                                    | 1. Increased blood supply            | 1. Hypertrophy                                 | Age: Loss of muscle mass, |
|                                    | 2. Increased muscle temperature      | 2. Increased tendon strength                   | Cramp: Involuntary, susta |
|                                    | 3. Increased muscle pliability       | 3. Increase in myoglobin stores                |                           |
|                                    | 4. Lactate (high intensity exercise) | 4. Increase in number and size of mitochondria |                           |
|                                    | 5. Micro-tears (resistance exercise) | 5. Increased storage of glycogen               |                           |

Agonist: muscle that contracts to produce movement (also called prime mover) Antagonist: muscle that relaxes (if contracted would make opposite joint movement) **Synergist:** muscle that assists the agonist (in force production) Fixator: muscle that assists the agonist (by stabilising the muscle's origin)